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Community response to
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Biologists use mathematical functions to model,
understand and predict nature. For most bio-
logical processes, however, the exact analytical
form is not known. This is also true for one of
the most basic life processes: the uptake of food
or resources. We show that the use of several
nearly indistinguishable functions, which can
serve as phenomenological descriptors of
resource uptake, may lead to alarmingly differ-
ent dynamical behaviour in a simple community
model. More specifically, we demonstrate that
the degree of resource enrichment needed to
destabilize the community dynamics depends
critically on the mathematical nature of the
uptake function.

Keywords: super-sensitivity; model structure;
community dynamics; paradox of enrichment

1. INTRODUCTION
Simple community models predict that increasing the

availability of resources will destabilize community

dynamics from equilibria to oscillatory dynamics, a

phenomenon termed the ‘paradox of enrichment’

(Rosenzweig 1971; Gilpin 1972; May 1972;

Myerscough et al. 1996). Attempts to establish this

effect in experiments or in the wild have met with

only partial success (McCauley & Murdoch 1987,

1990; Persson et al. 2001), indicating that real

communities respond to enrichment in a more com-

plicated way than simple models suggest. Environ-

mental conditions and properties of the community

(web-like structure, shift to inedible prey, inducible

defences) have been offered as explanations for why

communities might fail to destabilize as a conse-

quence of enrichment (Persson et al. 2001; Vos et al.
2004). Here, we offer a different explanation that is

related to the properties of the mathematical model

which was first used to put forth the ‘paradox’.

The classical Rosenzweig–MacArthur (R–M)

model (Rosenzweig & MacArthur 1963) is probably

the simplest formulation of a trophic community able

to produce realistic dynamic behaviour (Turchin
† Present address: Biology Department, McGill University, 1205
Avenue Docteur Penfield, Montreal, Quebec, H3A 1B1, Canada.
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2003). The model describes the changes over time of
two populations coupled by predation:

dx=dt Z gðxÞK f ðxÞy;

dy=dt Z f ðxÞyKmy:

The prey population, x, grows logistically at the rate
g(x)Zrx(1Kx/K ), where r is the growth rate of the
prey and K is the carrying capacity. The predator, y,
consumes the prey and grows according to the non-
linear uptake function (functional response), f(x), and
has mortality, m. As is common practice (Rosenzweig
1971; Murdoch et al. 1998), enrichment is simulated
in this model by increasing K, i.e. by allowing the prey
to grow to higher densities in the absence of predators.

We investigated whether the specific mathematical
formulation of the functional response affects the
community dynamics that the R–M model predicts.
The surprising result is that the degree of destabiliza-
tion caused by enrichment is extremely sensitive to
the mathematical nature of the uptake function, that
is, even functional response curves that are undistin-
guishable for all practical purposes may produce
qualitatively and quantitatively different dynamics.
2. METHODS
Minimum requirements for realistic uptake functions, f (x), are that
the function be zero at zero resource concentration, be monotoni-
cally increasing with resource density, and be saturating when
resource density goes to infinity (Myerscough et al. 1996). To
maximize similarity among different functional response curves we
restrict ourselves to functions with negative curvature over the
whole prey range (table 1; figure 1a). Ivlev’s function (Ivlev 1961)
and Holling’s type II function (Holling 1959) are the most widely
used functions that fulfil these requirements, but others, e.g.
trigonometric functions, have been proposed (Jassby & Platt 1976).
Given the error with which resource uptake by real organisms is
measured, it is usually unjustified to identify a best-fitting model,
and structurally different analytical forms may be used interchange-
ably. For our theoretical investigation, we chose a generic para-
meterization of Ivlev’s functional response (aIZ1, bIZ2; but see
electronic Appendix A) and used nonlinear least squares to
maximize the phenomenological similarity with Holling’s type II
response and a response curve based on a trigonometric function
(table 1; figure 1a).

Graphical analysis revolves around plotting the curves (iso-
clines) in the prey–predator phase plane that denote zero growth of
the model predator and prey populations. For Ivlev’s and Holling’s
functional responses, the R–M model produces vertical predator
and hump-shaped prey isoclines, although the left portion of the
hump may be hidden in the region of negative prey densities
(figure 1b,c). Intersections of predator and prey isoclines mark
equilibrium points. If the intersection occurs in the right decreasing
portion of the prey isocline, the equilibrium is locally stable and
population densities starting in the neighbourhood of the equili-
brium will converge in this point. Intersections in the left increasing
portion of the prey isocline mark unstable equilibria, which give
rise to oscillatory, limit cycle dynamics (Gilpin 1972; May 1972).
Using the trigonometric response function within the R–M model
results, for certain parameter sets, in a prey isocline with multiple
decreasing portions, which renders analysis more difficult. Besides
graphical analysis, the strength of stability is evaluated by calcu-
lation of the eigenvalues of the community matrix at equilibrium
(e.g. Edelstein-Keshet 1988). Further, we use numerical integration
of the R–M model to confirm the results from the stability analysis
and also to determine global stability of the equilibrium.
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3. RESULTS
It becomes immediately apparent that almost identi-
cal resource uptake curves (figure 1a) give rise to very
differently shaped prey isoclines (figure 1b,c), which
have drastic consequences for the dynamic stability of
q 2005 The Royal Society
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Figure 1. Response to enrichment in the R–M model.
(a) Three nearly congruent resource uptake curves (see
table 1 for equations): black, Ivlev ( fI ); blue, Holling ( fH);
red, trigonometric ( fT). Nonlinear least-squares fits to
Ivlev’s response with aIZ1, bIZ2. (Holling: aHZ3.05, bHZ
2.68; trigonometric: aTZ0.99, bTZ1.48.) (b,c) Isoclines
for two levels of enrichment of the prey population in the
predator–prey phase plane: (b) KZ1, (c) KZ4. Filled and
open circles mark stable and unstable equilibria, respect-
ively. Other parameters: rZ1, mZ0.1 (per time unit).
Colours as in (a).

Table 1. Critical enrichment values (K, carrying capacity) for dynamical stability in the R–M model formulated with three
similar functional responses (figure 1a).

level of enrichment Holling, fH(x)ZaHx/(1CbHx) Ivlev, fI(x)ZaI(1Kexp(KbIx)) trigonometric, fT(x)ZaTtanh(bTx)

K!0.45 stable stable stable
0.45!K!1.08 unstable stable stable
1.08!K!2.65 unstable unstable stable
2.65!K!10.12 unstable unstable multi-stablea

KO10.12 unstable unstable unstable

a Initial conditions determine whether dynamics are oscillatory or settle on equilibria.
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the system. First, we study the case where the
carrying capacity is set to unity, KZ1 (figure 1b). In
this case, only Holling’s function has the potential to
destabilize the population dynamics because only its
prey isocline has an increasing portion for positive
prey densities. With the two other functional
responses, the prey isocline is decreasing and
predator–prey dynamics settle on stable equilibria in
both cases. This is also obvious from the simulated
time-series of predator and prey densities starting
from initial values close to the equilibrium (Electronic
Appendix A). Using Holling’s functional response,
the equilibrium is unstable and the trajectories settle
into a stable limit cycle with large amplitudes. By
contrast, the trigonometric function leads to a stable
equilibrium and the trajectories quickly spiral into the
steady state. Ivlev’s function produces a dynamical
behaviour that is intermediate between these
extremes. The equilibrium is stable but only very
weakly so (see also figure 2); initially the trajectories
undergo weakly damped oscillations which, however,
eventually settle into the equilibrium.

To conclude, even though the resource uptake
curves are nearly identical, the resulting time-course
of predator and prey densities is very different in the
three cases. This also has consequences for the
extinction risk. Using the trigonometric response
curve, both predator and prey abundance are always
far from zero and therefore the populations have a
high expectation of persistence. By contrast, with
Holling’s function the oscillating densities pass
through very small values, putting them at a high risk
of extinction. Again, the Ivlev response curve leads to
intermediate behaviour. Initially, while the time sol-
utions are still oscillatory there is a moderate extinc-
tion risk. However, with increasing time, the
amplitude of the oscillations, and therefore the
extinction risk, are more and more reduced.

With enrichment (by raising the carrying capacity),
all three functions become potentially destabilizing,
but not to the same degree (table 1; figure 2).
Enrichment, by a fourfold increase of the carrying
capacity (KZ4) and leaving all other parameters
unchanged, leads to limit cycles if Holling’s or Ivlev’s
responses are used (figure 1c). However, with the
same amount of enrichment the equilibrium remains
locally stable in a system that is based on the
trigonometric function. Nevertheless, for an appro-
priate choice of initial values, limit cycle oscillations
can also be observed in this system, because in this
range of intermediate enrichment, the trigonometric
Biol. Lett. (2005)
function results in multi-stability with coexistence of

stable equilibrium and oscillatory dynamics (table 1).

The system needs to be enriched even more (KO
10.12) before destabilization occurs globally (table 1).

http://rsbl.royalsocietypublishing.org/
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Figure 2. Stability analysis. Real part, t, of the eigenvalue of
the community matrix versus the carrying capacity, K, for
different uptake curves. Positive values of t indicate an
unstable equilibrium. Although the system with fH (blue) is
far from the stability boundary at large K, a subtle change
in model structure (to fT; red) may stabilize the equilibrium.
Other parameters and colours as in figure 1.
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Thus, the enrichment level at which the equilibrium
is destabilized varies by a factor of more than 20
(table 1; figure 2). Although enrichment eventually
leads to destabilization in all models, the vastly
differing conditions at which it occurs will be dis-
concerting to anyone using mathematical models as a
predictive tool.

The three functional responses can be ranked
according to their potential to destabilize the
dynamics of the R–M model (Holling IIOIvlevO
trigonometric function). We found this pattern to be
very general and extremely robust over wide ranges of
the parameters aI and bI, which determine the
steepness and saturation level of the uptake function.
The ranking remained largely constant even when we
constrained our fits either to have the same slope at
the origin or the same saturation level as Ivlev’s
function (Electronic Appendix A).
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4. DISCUSSION
The dynamic stability of the R–M model and other
models has been shown to depend on the type of
functional response used (Oaten & Murdoch 1975;
Armstrong 1976; Williams & Martinez 2004). It is
important to understand that our result is of a very
different nature. We did not study the effect on system
stability of different functional response curves that
represent mechanistically motivated alterations of a
basic function, e.g. Holling’s type I, II and III
responses (Holling 1959). On the contrary, our goal
was to investigate the effect of response functions that
are as similar as possible phenomenologically, but are
derived from entirely different mathematical foun-
dations. What we found is that three functions, which
are identical for all practical purposes, give completely
different outcomes in terms of model dynamics,
a phenomenon called sensitivity to model structure
(Wood & Thomas 1999).

Sensitivity to model structure has been described
for the R–M (Myerscough et al. 1996) and other
Biol. Lett. (2005)
ecological models (Wood & Thomas 1999; Gross et al.
2004), but we offer a simple explanation for this
striking phenomenon based on the structural similarity
of the mathematical functions that occur in the R–M
model. Here, logistic prey growth, g(x), and resource
uptake, f(x), are structurally very similar at small prey
numbers, x. This has consequences for the prey
isocline, ŷðxÞZgðxÞ=f ðxÞ: (Recall that the stability of the
equilibrium depends on the slope of ŷðxÞ at equili-
brium.) In the extreme case that the two functions are
exactly identical, the isocline is a constant ŷðxÞZ1;
and has a slope of zero everywhere. Thus, linear
stability is not well defined and the system is structu-
rally unstable. But assume that in some range close to
the equilibrium point the two functions differ slightly,
except for a constant: cf(x)Zg(x)C3(x), where 3(x) is a
small function. Now the isocline can be approximated
as ŷðxÞzcð1K3ðxÞ=gðxÞÞ and in this range the sign of
the slope of ŷðxÞ entirely depends on the difference,
3(x). Therefore arbitrary small deviations of resource
uptake, f(x), from the prey growth rate, g(x), deter-
mine the stability of the equilibrium.

We emphasize that the whole argument relies on
the fact that, in the relevant interval, prey growth,
g(x), and resource uptake, f(x), are structurally very
similar functions. In the R–M model this is always the
case for small prey numbers because both g(x) and
f(x) start from zero as negatively curved functions
(this becomes apparent from a Taylor expansion of
f(x) up to second order). Thus, whenever the equili-
brium is at small prey levels, e.g. for small mortality,
m (as in figure 1), the R–M model is sensitive to
minor variations in the form of the functional
response curve. By contrast, if the equilibrium is at
large values of x, where prey growth and resource
uptake are significantly different functions, e.g. at
large or intermediate levels of mortality, m, the effect
of sensitivity to the model structure is not observed.

The same mechanism lies at the heart of one of the
major drawbacks of the original Lotka–Volterra
model, which is a special case of the R–M model
where prey growth and resource uptake are linear
functions, i.e. g(x)Zax and f(x)Zbx. In this model
the expression g(x)/f(x) is constant per definition,
which leads to structural instability in the whole
parameter range. With the introduction of nonlinear
logistic prey growth and saturating functional
response, Rosenzweig and MacArthur tried to cir-
cumvent these problems. Indeed this works out for
most parameter ranges. However, as shown above,
the same difficulties of sensitivity to infinitesimal
variations in the model structure are still inherent in
the R–M model and are able to enter through the
back door in, for example, cases of small mortality.

Sensitivity to model structure may be responsible
for the failure to observe destabilization as a result of
enrichment in real communities. This is not to say
that mechanistic explanations should generally
be ruled out. McCauley et al. (1999), for example,
showed convincingly that competition between ined-
ible and edible prey can reduce the effective carrying
capacity of the prey and thereby stabilize the commu-
nity dynamics. We caution, however, that such

http://rsbl.royalsocietypublishing.org/
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conclusions should not be drawn prematurely, based
on a mismatch between a particular theoretical model
and empirical results. Instead, we advise an evaluation
of the robustness of model predictions for alternative
mathematical formulations whenever the exact
mechanistic nature of the resource uptake is not
known. Currently, ecological modellers use Holling’s
type II function as a standard in consumer–resource
models although the true uptake mechanism may
vary across and within communities ( Jeschke et al.
2002; Mols et al. 2004). Our analysis has demon-
strated that a much higher degree of enrichment may
be required for destabilization than such standard
models predict. We conclude that, unless the exact
mechanistic nature of the relationship between con-
sumer and food is known, caution should be used
when predicting predator–prey dynamics and the
effect of enrichment without considering the effects of
sensitivity to model structure.
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